# POZNAN UNIVERSITY OF TECHNOLOGY



#### EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

## **COURSE DESCRIPTION CARD - SYLLABUS**

Course name

Graphic notation of construction [S1Elmob1>GZK1]

| dr inż. Krzysztof Kowalski<br>krzysztof.kowalski@put.poznan.pl |                        | dr inż. Krzysztof Kowalski<br>krzysztof.kowalski@put.poznan.pl |                          |
|----------------------------------------------------------------|------------------------|----------------------------------------------------------------|--------------------------|
| Coordinators                                                   |                        | Lecturers                                                      |                          |
| Number of credit points<br>1,00                                |                        |                                                                |                          |
| Tutorials<br>0                                                 | Projects/seminars<br>0 | 5                                                              |                          |
| Number of hours<br>Lecture<br>15                               | Laboratory classe<br>0 | 9S                                                             | Other (e.g. online)<br>0 |
| Form of study<br>full-time                                     |                        | Requirements compulsory                                        |                          |
| Level of study<br>first-cycle                                  |                        | Course offered in polish                                       | 1                        |
| Area of study (specialization)<br>–                            |                        | Profile of study general academic                              | C                        |
| Course<br>Field of study<br>Electromobility                    |                        | Year/Semester<br>1/1                                           |                          |

## **Prerequisites**

The student starting this course should have basic knowledge of planimetry and stereometry. The ability to use the acquired knowledge, methods and tools to solve typical engineering tasks.

## **Course objective**

Acquiring the skill of graphic representation of simple elements of technical constructions in two and threedimensional systems. Learning the methods and principles of graphic representation of technical constructions.

## Course-related learning outcomes

#### Knowledge:

Basic knowledge of mechanics, including vehicle dynamics; knows and understands the basic principles of graphic representation of structures in engineering applications.

Skills:

He can prepare documentation of an engineering task in accordance with a given specification and using appropriate methods, techniques, tools and materials.

Social competences:

Understands the importance of improving professional, personal and social competences; is aware that knowledge and skills in the field of electromobility are evolving rapidly.

Understands the importance of knowledge in solving problems in the field of electromobility; is aware of the necessity to use the knowledge of experts when solving engineering tasks beyond their own competences.

#### Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows:

Lecture:

The knowledge acquired in the course of the lecture is verified during the exam, which consists of completing a project task to check the student"s skills. Passing threshold: 50% of points.

## Programme content

Basics of creating a engineering drawing and documentations in electrical issues. Standards and rules for describing the structure and creating documentation for a technical object. Principles of computer mapping of technical objects. Two and three-dimensional problems in the engineering drawings of technical construction. Graphical representation of machine parts, executive drawings.

## **Teaching methods**

Lecture:

A lecture with a multimedia presentation supplemented with examples given on the blackboard, an interactive lecture with the formulation of questions to students. Additional teaching materials provided to students.

## Bibliography

Basic

1. Dobrzański T., Rysunek techniczny maszynowy, WNT, W-wa 2019

2. Rysunek techniczny i rysunek maszynowy. Zbiór Polskich Norm

Additional

1. Folęga P.,Wojnar G., Czech P.; Zasady zapisu konstrukcji Maszyn, Wydawnictwo Politechniki Śląskiej, Gliwice 2016.

## Breakdown of average student's workload

|                                                                                                                                            | Hours | ECTS |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| Total workload                                                                                                                             | 28    | 1,00 |
| Classes requiring direct contact with the teacher                                                                                          | 15    | 0,50 |
| Student's own work (literature studies, preparation for laboratory classes/<br>tutorials, preparation for tests/exam, project preparation) | 13    | 0,50 |